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Anti-HIV (human immunodeficiency virus) drug discovery has been increasingly focusing on
HIV integrase (IN) as a potential therapeutic target. This enzyme is required for the integration
of reverse transcribed proviral DNA into the host cell’s genome and is essential for the
propagation of the HIV life cycle. Comparative molecular field analysis (CoMFA) and
comparative molecular similarity indices analysis (CoMSIA) three-dimensional quantitative
structure-activity relationship (3D QSAR) studies and docking simulations were conducted
on a series of potent conformationally restrained cinnamoyl inhibitors of HIV-1 IN (Artico; et
al. J. Med. Chem. 1998, 41, 3948-3960). Predictive 3D QSAR models were established using
SYBYL multifit molecular alignment rule, which had conventional r2 and cross-validated
coeffiecient (q2) values up to 0.981 and 0.721 for CoMFA and 0.975 and 0.804 for CoMSIA,
respectively. These models were validated by an external test set (Burke; et al. J. Med. Chem.
1995, 38, 4171-4178). CoMFA and CoMSIA 3D QSAR models were also derived using a
molecular alignment obtained by docking the compounds into the active site of HIV IN. These
latter models were comparable to multifit-derived models in terms of relative descriptor field
contributions and the partial least squares (PLS) contour maps. The CoMSIA 3D QSAR models
performed better than the CoMFA models. The superior performance of CoMSIA was attributed
to the large contribution of hydrogen-bonding interactions to the inhibitory activity differences
among the compounds. This was supported by FlexX binding energy scores that correlated
well with the inhibitory activity differences between hydroxylated compounds and their
corresponding methoxy or deoxy counterparts. The CoMFA and CoMSIA PLS contour maps
and MOLCAD-generated active site electrostatic, lipophilicity, and hydrogen-bonding potential
surface maps, as well as the docking results, were integrated to propose a binding mode for
the cinnamoyl inhibitors at the active site of HIV-1 IN.

Introduction
Acquired immunodeficiency syndrome (AIDS) is a

formidable pandemic that is still wreaking havoc world-
wide. Targeting the human immunodeficiency virus
(HIV), a retrovirus that is implicated in the etiology of
AIDS, has been useful in AIDS chemotherapy. Upon
infection, HIV enters CD4 positive T lymphocytes by
binding to the CD4 receptor via its coat protein, p120.
Following the infection, this retrovirus uses three key
enzymes to propagate its life cycle. These enzymes are
(i) reverse transcriptase (RT), an RNA-dependent DNA
polymerase that is used by the virus to transcribe the
viral genomic RNA into proviral DNA for incorporation
into the host cell DNA; (ii) integrase (IN), which is the
enzyme responsible for insertion of the proviral DNA
into the host cell genome; and (iii) HIV protease (PR),
the enzyme necessary for the processing and packaging
of new virulent viral particles for exiting the host cell.1,2

Clinical agents that target RT and PR have been
successfully developed and are used in combination to
keep the HIV virus under control for many AIDS
patients and improve the lives of AIDS patients.3
However, targeting RT and PR still does not eliminate

the virus from patients,4,5 making it necessary to explore
other targets. Attention has recently been focused on
the HIV IN enzyme, which is an attractive potential
target for anti-HIV drug development because it is
essential for viral replication and productive infection6,7

and does not appear to have a counterpart in human
cells. Furthermore, compounds that unambiguously
inhibit HIV replication in cell culture by targeting IN
have been identified,8 and an oligonucleotide9 purported
to inhibit HIV IN, Zentivir, has been undergoing phase
I/II clinical trials in AIDS patients.10 Much effort is
being expended in the discovery of small molecule IN
inhibitors11 for therapeutic use, which would be better
drug candidates than the oligonucleotides in regards to
bioavailability and metabolic stability considerations.
Various approaches have been adopted in the search for
small molecule IN inhibitors. These include compound
library screening of both synthetic compounds and
natural products12 and computer-aided drug design
methods such as three-dimensional (3D) database search-
ing13,14 and molecular docking into the IN catalytic
core.15 A diverse array of molecules have been identified
as IN inhibitors, with polyhydroxylated aromatic com-
pounds being quite well-represented.11,16 No drugs
targeted to IN are yet on the market due to the fact
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that the inhibitors identified to date lack selectivity,2
creating the need for the discovery of new inhibitors.
This requires insights into the factors that influence
inhibitor potency and selectivity toward HIV IN to guide
drug design.

Three-dimensional quantitative structure-activity
relationship (3D QSAR) methods, such as comparative
molecular field analysis (CoMFA),17 have been success-
fully applied in many instances to guide the design of
new bioactive molecules.18 The application of 3D QSAR
methodology to the design of HIV IN inhibitors has
received relatively little attention.19 The present study
has extended CoMFA and the more recently introduced
comparative molecular similarity indices analysis (Co-
MSIA)20,21 3D QSAR methodologies to potent confor-
mationally restrained cinnamoyl HIV IN inhibitors21 to
gain insights into how steric, electrostatic, hydrophobic,
and hydrogen-bonding interactions influence their ac-
tivity, and to derive predictive 3D QSAR models for
designing and forecasting the activity of IN inhibitors
of this class. It has been previously surmised that subtle
steric and electrostatic effects come into play regarding
the bioactivity of these compounds, the nature of which
requires additional investigation.22 In addition to the
3D QSAR analyses, docking simulations were performed
using the only published X-ray crystallographic struc-
ture of the human IN catalytic core in complex with an
inhibitor,23 to explore the binding modes of these
compounds at the IN active site. Interest for this study
also stems from the presence of the 1,3-keto-enol
moiety in many of the compounds, a common structural
feature found in potent and potentially useful HIV IN
inhibitors8,23 such as 1-(5-chloroindol-3-yl)-3-hydroxy-
3-(2H-tetrazo-5-yl)-propenone (ClTEP, 1), the ligand in
the published X-ray structure of the human IN catalytic
core-ligand complex.23

Materials and Methods
Data Sets. The training set used comprises a series of

conformationally restrained cinnamoyl derivatives, which have
been shown to be potent specific inhibitors of IN relative to
other nucleic acid processing enzymes, namely, HIV RT and
RNA polymerase.22 An attractive feature of the compounds in
the training set is their relative conformational rigidity, which
makes them more amenable to meaningful CoMFA and
CoMSIA analyses than flexible molecules. Furthermore, X-ray
crystallographic structural representatives are available that
provide templates for modeling the compounds.22 The IC50

(concentration causing 50% inhibitory effect for inhibiting 3′-
processing by IN) values for the training set22 were converted
to pIC50 (-log IC50) values and used as dependent variables
in the CoMFA and CoMSIA QSAR analyses (see Table 1). The
test set was composed of 23 compounds, and their experimen-
tal HIV-1 IN inhibitory data were taken from a report by
Burke et al.24 (see Table 2).

Molecular Modeling and Alignment. Three-dimensional
structure building and all modeling were performed using the
SYBYL program package, version 6.725 on a Silicon Graphics
Octane (R1200) workstation with the IRIX 6.5 operating
system. Conformations of compounds in the training set were
generated using torsion angles (τ values) indicated for the

same or similar compounds in the Cambridge Crystallographic
Structural Database as provided by Artico et al.22 Energy
minimizations were performed using the Tripos force field26

with a distance-dependent dielectric and the Powell conjugate
gradient algorithm with a convergence criterion of 0.01 kcal/
(mol A). Partial atomic charges were calculated using the
semiempirical program MOPAC 6.0 and applying the PM3
Hamiltonian.27

CoMFA and CoMSIA studies require that the 3D structures
of the molecules to be analyzed be aligned according to a
suitable conformational template, which is assumed to be a
“bioactive” conformation.17 The molecular alignments used for
the studies were obtained by means of the SYBYL “multifit”
alignment function or FlexX-docked alignment. For the multifit
alignment, the default SYBYL spring constant value of 20 was
used, and compound 2, one of the most active and conforma-
tionally constrained analogues, was used as the alignment
template. The reference atoms in compound 2 used for align-
ment were as follows: (i) the six aromatic carbon atoms of the
common catechol or its methylated or deoxy counterparts and
(ii) heavy atoms of the adjoining R,â-unsaturated carbonyl
moiety (see atoms numbered 1-10 in Figure 1). For the FlexX-
docked alignment, conformations were selected from the
“east-west” binding orientation at the active site of IN, taking
into consideration the FlexX ranking, consensus scores, and
molecular geometry.

CoMFA and CoMSIA 3D QSAR Models. In deriving the
CoMFA and CoMSIA descriptor fields, a 3D cubic lattice with
grid spacing of 2 or 1 Å and extending 4 Å units beyond the
aligned molecules in all directions was created to encompass
the aligned molecules. CoMFA descriptors were calculated
using an sp3 carbon probe atom with a van der Waals radius
of 1.52 Å and a charge of +1.0 to generate steric (Lennard-
Jones 6-12 potential) field energies and electrostatic (Coulom-
bic potential) fields with a distance-dependent dielectric at
each lattice point. The SYBYL default energy cutoff of 30 kcal/
mol was used as well as cutoffs of 25, 20, and 15 kcal/mol.
The CoMFA steric and electrostatic fields generated were
scaled by the CoMFA-STD method in SYBYL.

CoMSIA similarity indices descriptors were derived accord-
ing to Klebe et al.20 with the same lattice box as was used for
the CoMFA calculations, with a grid spacing of 2 or 1 Å
employing a C1+ probe atom with a radius of 1.0 Å as
implemented in SYBYL. CoMSIA similarity indices (AF) for a
molecule j with atoms i at a grid point q are calculated by eq
1 as follows:

Five physicochemical properties k (steric, electrostatic, hydro-
phobic, hydrogen bond donor, and hydrogen bond acceptor)
were evaluated using the probe atom. A Gaussian type
distance dependence was used between the grid point q and
each atom i of the molecule. The default value of 0.3 was used
as the attenuation factor (R). In CoMSIA, the steric indices
are related to the third power of the atomic radii, theelectro-
static descriptors are derived from atomic partial charges, the
hydrophobic fields are derived from atom-based parameters
developed by Viswanadhan et al.,28 and the hydrogen bond
donor and acceptor indices are obtained by a rule-based
method derived from experimental values.29

Figure 1. Compound used as template for molecular align-
ment showing; in bold face, and numbered 1-10, are shown
the reference atoms used in multifit alignment protocol of the
SYBYL program.

AF,k
q(j) ) -∑ ωprobe,k ωikeiq2

-Rr (1)
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The CoMFA and CoMSIA descriptors were used as inde-
pendent variables, and pIC50 values were used as dependent
variables in partial least squares (PLS) regression analyses
to derive 3D QSAR models using the standard implementation
in the SYBYL package. The predictive value of the models was
evaluated first by leave-one-out (LOO) cross-validation. The
cross-validated coefficient, q2, was calculated using eq 2

where Ypred, Yactual, and Ymean are predicted, actual, and mean
values of the target property (pIC50), respectively. ∑(Ypred -
Yactual)2 is the predictive sum of squares (PRESS). To maintain
the optimum number of PLS components and minimize the
tendency to over fit the data, the number of components
corresponding to the lowest PRESS value was used for deriving
the final PLS regression models.30 In addition to the q2 and
the corresponding PRESS and number of components, the
conventional correlation coefficient r2 and its standard error
s were also computed. CoMFA and CoMSIA coefficient maps
were generated by interpolation of the pairwise products
between the PLS coefficients and the standard deviations of
the corresponding CoMFA or CoMSIA descriptor values.

Molecular Docking. The FlexX program31 version 1.8
interfaced with SYBYL 6.7 was used to dock the compounds
to the active site of IN. FlexX is a fast automated docking

program that considers ligand conformational flexibility by an
incremental fragment placing technique.31,32 We used the
program to dock the training set molecules into the active site
of monomeric unit “A” of the crystal structure of the HIV-1
IN catalytic core. The 3D coordinates of the IN active site were
taken from the recently reported X-ray crystal structure of the
HIV-1 IN catalytic core in complex with an inhibitor deposited
in the Brookhaven Protein Databank (PDB code: 1QS4).23 The
missing residues at positions 141-144 were inserted by means
of the loop search algorithm in the SYBYL BIOPOLYMER
module. The active site for docking was defined as all amino
acids within 6.5 Å proximity of the cocrystallized ligand
(compound 1).

Molecular Surface Physicochemical Properties. Sur-
face physicochemical property maps, i.e., electrostatic poten-
tial, hydrophobicity (lipophilicity) potential, and hydrogen
boding (donor/acceptor) potential maps of the IN active site
were generated on the solvent assessible (connolly) surface
using the MOLCAD program in SYBYL. These surface prop-
erty maps were examined for the determination of comple-
mentarity with CoMFA and CoMSIA PLS contour maps.

Results and Discussion

3D QSAR Modeling. PLS, the statistical method
used in deriving the 3D QSAR models, is a variation of
principal component regression33 in which the original
variables are replaced by a small set of linear combina-

Table 1. Structures, HIV-1 IN Inhibitory Activity, and FlexX Energy Scores of Compounds in the Training Set

a pIC50 (-log IC50) values were derived from biological activity data reported by Artico et al.22 b FlexX total energy score in kcal/mol.

q2 )1 - ∑(Ypredicted - Yobserved)
2

∑(Yobserved - Ymean)2
(2)
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tions thereof. The latent variables so generated are used
for multivariate regression, maximizing the communal-
ity of predictor and response variable blocks. Several
attractive features of PLS need mention, such as (i) the
ability to handle multivariate regression analysis in
cases where the number of independent variables is
greater than the number of samples (compounds) as
found in CoMFA and CoMSIA 3D QSAR analyses; (ii)
the ability to perform well even when interdescriptor
correlations exist that would pose a problem for tradi-
tional multiple linear regression;34 (iii) the reduction of
the risk of chance correlations.35

Initial LOO cross-validated PLS analyses were used
to determine the optimum number of components to be
used in the final QSAR models. PLS results are sum-
marized in Table 3. Figures 2 and 3 show the prediction
curves obtained with final CoMFA and CoMSIA 3D
QSAR models. Table 4 gives the residual values from
the prediction of the activity values of the test set.

More rigorous statistical testing was performed by
group cross-validation and scrambling of the biological
data (randomization control). The average q2 values and
standard deviations obtained in the group cross-valida-
tion and biological data randomization exercises are
presented in Table 5. These results indicate stability
and robustness in the CoMFA and CoMSIA QSAR
models.

Docking of Cinnamoyl Inhibitors into the Active
Site of HIV-1 IN. We used the FlexX program32,33 to
dock the database of molecules in our training set into
the active site of a monomeric unit of the catalytic core
of HIV-1 IN. The monomeric unit A was used although
the crystal structure contains a symmetry-related neigh-
boring ligand causing a juxtaposition of two inhibitors
each bound to the active site of a different monomer but

interacting with each other.23 This crystal structure
representation has been characterized as being signifi-
cantly influenced by crystal packing effects and there-
fore not unequivocal.36

Graphical representations of the docking results are
presented in Figure 4. To assess the capability of the
FlexX program, we tested how it would perform in
docking the bound ligand, compound 1 (5CITEP) in the
active site of the crystal structure. FlexX docked this
ligand in the same pocket as the crystal structure and

Table 2. Structures and HIV-1 IN Inhibitory Activity of Compounds in the Test Set

compd type X Y R R1 R2 R3 R4 R5 pIC50
a

26 A O PhCH2CH2 H OH OH H H 5.15
27 A O PhCH2CH2 H OH OCH3 H H 4.22
28 A O PhCH2CH2 H OCH3 OH H H 4.00
29 A O PhCH2CH2 H OCH3 OCH3 H H 4.00
30 A O PhCH2CH2 H F F H H 4.00
31 A O PhCH2CH2 OH H H OH H 4.00
32 A O PhCH2CH2 OH OH OH H H 5.70
33 A O PhCH2CH2 H OH OH OH H 5.70
34 A O PhCH2CH2 H OH OH H OH 4.26
35 A O CH3 H OH OH H H 4.00
36 A O CH3CH2 H OH OH H H 4.00
37 A O PhCH2 H OH OH H H 5.05
38 A O PHCH2CH2CH2 H OH OH H H 5.10
39 A O 2-naphthylethyl H OH OH H H 4.36
40 A O 1-naphthylethyl H OH OH H H 4.82
41 B O C PhCH2CH2 OH OH H 4.17
42 B O C PhCH2CH2 H OH OH 4.74
43 B O C OCH3 H OH OH 5.10
44 B O N OCH3 OH OH H 4.00
45 B O N OCH3 H OH OH 4.85
46 B NH N PhCH2 OH OH H 4.00
47 B NH N PhCH2 H OH OH 4.12
48 B NH N PhCH2CH2 H OH OH 4.40

a pIC50 (-log IC50) values were derived from biological activity data reported by Burke et al.24

Table 3. PLS Statistics of CoMFA and CoMSIA 3D QSAR
Models

24 compds model 22 compds modelstep
size PLS statistics CoMFA CoMSIA CoMFA CoMSIA

2 Å q2 0.423 0.685 0.696 0.804
PRESS 0.937 0.673 0.689 0.535
r2 0.973 0.969 0.976 0.975
s 0.204 0.210 0.195 0.192
F 101 114 100 125
PLS components 6 5 6 5
field contribution
steric 0.469 0.066 0.459 0.040
electrostatic 0.531 0.251 0.541 0.173
hydrophobic 0.144 0.086
donor 0.343 0.450
acceptor 0.196 0.250

1 Å q2 0.544 0.660 0.721 0.795
PRESS 0.832 0.699 0.660 0.517
r2 0.981 0.951 0.980 0.942
s 0.171 0.264 0.176 0.275
F 145 71 124 98
PLS components 6 5 6 3
field contribution
steric 0.482 0.096 0.482 0.041
electrostatic 0.518 0.192 0.518 0.138
hydrophobic 0.141 0.114
donor 0.329 0.425
acceptor 0.242 0.282

844 Journal of Medicinal Chemistry, 2002, Vol. 45, No. 4 Buolamwini and Assefa



aligned the docked structures in the same horizontal
plane within the active site similar to the bound ligand
in the crystal structure. The second-ranked FlexX-
docked structure among 30 structures, according to
FlexX binding energy scoring, was the closest to the
bound ligand with a root-mean-square deviation of 3.43
Å. As illustrated in Figure 4a, the chloroindole ring of
this FlexX-docked ligand was in the same general
vicinity as the chloroindole ring of the bound ligand.
However, it was turned upside down, whereby the
chlorine became buried in the cleft between Gln148 and
Asp116 while the keto-enol moiety interacted with
Asn155, Cys65, and Thr66. The tetrazole ring also is in
a similar orientation as that of the bound ligand but
was placed in the cleft between Lys159 and His67, with
which it interacted extensively. This orientation appears
somewhat similar to the alternative (energetically de-
generate) orientation of the bound ligand recently
proposed by Sotrifer et al.36,37 Figure 4a shows the
superimposition of the FlexX-docked structure (ball-and-
stick rendering) over the crystal structure location
(capped-sticks rendering) of the bound ligand in the IN
active site.

The docking of the cinnamoyl compounds produced
structures that were divided into two clusters occupying
two separate but overlapping binding regions. The first
cluster, which is aligned horizontally across the binding
site as shown in Figure 4b, occupies what we term the
east-west binding region, which encompasses the same
region that FlexX docked the bound ligand. The second

cluster is aligned nearly vertically within the active site
and is termed the north-south binding region. Figure
4c shows space-filling models of two different cinnamoyl
molecules, one colored by the atom type (C, white; H,
cyan; O, red, in the east-west binding region) and the
other colored by the atom type (C, orange; H, cyan; O,

Figure 2. CoMFA predicted vs experimental pIC50 values.
(a) Fitted predictions for the training set; filled circles repre-
sent predictions by the 2 Å model, while open circles represent
predictions by the 1 Å model. (b) Predictions for the test set;
filled circles and the solid line represent predictions by the 2
Å model, while open circles and the broken line represent
predictions by the 1 Å model.

Figure 3. CoMSIA predicted vs experimental pIC50 values.
(a) Fitted predictions for the training set; filled diamonds
represent predictions by the 2 Å model, while open diamonds
represent predictions by the 1 Å model. (b) Predictions for the
test set; filled diamonds and the solid line represent predictions
by the 2 Å model, while open diamonds and the broken line
represent predictions by the 1 Å model.

Table 4. Residuals of the Predictions of the Test Set by the
CoMFA and CoMSIA Models

residuals

compd pIC50

CoMFA
2 Å

CoMFA
1 Å

CoMSIA
2 Å

CoMSIA
1 Å

26 5.15 0.606 0.002 -0.056 -0.022
27 4.22 1.081 0.526 0.470 0.505
28 4.00 0.744 -0.024 -0.069 -0.004
29 4.00 0.308 -0.402 -0.112 -0.044
30 4.00 1.627 1.136 -0.113 -0.269
31 4.00 -0.005 -0.354 0.213 0.147
32 5.70 -0.580 -1.021 -0.029 0.022
33 5.70 -0.065 -0.716 -0.822 -0.741
34 4.26 1.386 0.713 0.636 0.717
35 4.00 1.126 0.822 0.833 0.953
36 4.00 1.336 1.062 1.019 1.020
37 5.05 0.188 0.242 -0.514 -0.474
38 5.10 0.917 0.536 0.243 0.286
39 4.36 1.353 0.518 0.696 0.755
40 4.82 -0.559 -0.858 -0.143 0.005
41 4.17 -0.619 -0.615 -0.965 -0.977
42 4.74 -0.398 -0.510 0.090 0.020
43 5.10 -1.136 -1.019 -0.291 -0.268
44 4.00 -0.281 -0.332 -0.222 -0.172
45 4.85 -0.332 -0.408 -0.096 -0.035
46 4.00 -0.298 -0.199 -0.735 -0.679
47 4.12 0.307 0.349 0.104 0.171
48 4.40 0.614 0.392 0.629 0.476
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red, in the north-south binding region) as well as the
cocrystallized inhibitor (compound 1, colored magenta)
in the active site. Most compounds in the training set
are much larger than the bound inhibitor; therefore,
they needed to extend much beyond the bound inhibitor
pocket. The main active site amino acid residues that
interacted with most of the docked cinnamoyl com-
pounds in our study were Asp64, Cys65, Thr66, His67,
Glu92, Glu96, Glu152, Lys156, and Lys159 as labeled

in Figure 4c. Structural information regarding inhibitor
binding to the HIV-1 catalytic site is very limited.
Recent docking studies have suggested binding modes
for several different IN inhibitors at the active site, and
invariably, different inhibitors adopt different binding
orientations with some overlapping interactions.37 The
HIV-1 IN active site is quite large and relatively shallow
and therefore able to accommodate large variations in
ligand size and shape and different binding modes.

Table 5. Results of Group Cross-Validation and Randomization Exercises

24 compds 22 compds

exercise
average PLS

statistics CoMFA CoMSIA CoMFA CoMSIA

group validation q2 a 0.419 (0.082) 0.685 (0.029) 0.653 (0.052) 0.795 (0.019)
randomization q2 -0.278 -0.245 -0.295 -0.245

a Value in parentheses is the standard deviation.

Figure 4. (a) Stereoview of FlexX docking of the ligand in complex (ball-and-stick rendering) to the active site of the monomer
structure of HIV-1 IN; comparison with the experimental position of the bound ligand (capped-sticks rendering). The ligands are
colored by atom type (C, gray; N, blue; O, red; Cl, green), and important active site amino acids are shown in magenta. (b) FlexX
docking of cinnomoyl IN inhibitors into the IN active site, showing the two clusters obtained: (i) east-west (horizontal) and (ii)
north-south (vertical), on the connolly surface of the active site. (c) Space-filling rendering showing ligands (colored by atom
type) docked in the two binding locations as depicted in panel b; the experimentally bound ligand is colored magenta, the carbon
atoms of the east-west-oriented docked ligand are colored gray, whereas those of the north-south-bound ligand are colored
orange.
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The top-ranking members of the docked structures
were mostly found in the east-west binding region. This
also was the binding region that complemented the
CoMFA and CoMSIA contour maps from the 3D QSAR
models as discussed in the respective sections below.
Consequently, we have proposed this orientation to be
probably the best binding mode for the cinnamoyl
inhibitors at the IN active site. Interestingly, the
docking energy scores calculated by FlexX correlated
quite well with the biological activity (pIC50) in a general
sense; compounds with the highest activity showed the
lowest FlexX energy scores (see Table 1). This correla-
tion was more pronounced for molecules that differed
only by the presence of phenolic hydroxyl groups on one
hand and their absence or methylation on the other
hand. Thus, compound 5, which is more potent than the
corresponding dimethylated derivative compound 6, is
ranked higher than the latter in predicted binding
affinity as shown by the lower FlexX energy scores
(Table 1). Likewise, compound 8 is ranked higher than
compound 9, which ranks similar to compound 10, and
both 9 and 10 rank higher than compound 11 in which
all four phenolic OH groups have been methylated.
Furthermore, compound 12 is more potent than and was
predicted to bind more tightly than compound 13, which
has two less hydroxyl groups. The same trend holds true
among compounds 14-17 as well as between com-
pounds 19 and 21 and compounds 20 and 22. This trend
indicates the importance of hydrogen-bonding interac-
tions in determining binding at the active site. The
carbonyl groups in the indanedione and indanone
derivatives, compounds 23 and 24, respectively, are also
indicated to contribute to the binding by the FlexX
docking results. The only group of compounds that did
not show the trend for the presence of OH groups is
compounds 19 and 20, where one would have expected
19 to be more potent than 20 but the experimental
results are the opposite. Unlike most of the compounds
that show the OH trend, compounds 20 and 21 like
compounds 19-25 are not symmetrical. It appears that
the presence of the OH groups on the phenyl ring of
the cinnamoyl portion of these molecules is more
important for inhibitory activity than their presence on
the phenyl ring of the benzoyl portion in compounds 19-
25. It also appears that the presence of phenolic hy-
droxyl groups adjacent to each (ortho relationship) is
more important than just the mere presence of these
groups.

Some exceptions to the general trends have been
addressed in the following discussion. The reason for
the high binding energy score of compound 18 is not
apparent since it lacks the phenolic hydroxyl groups and
has a low potency. This may be an artifactual occurrence
in which compensation of energy gain by hydrophobic
interaction may offset the absence of the interaction
with phenolic hydroxyl groups. The other discrepancy
is the less than expected binding energy score for the
cyclopentyl derivative, compound 7, as compared to its
cyclohexyl counterpart, compound 6. This may result
from how their different ring systems fit into the cleft
between Lys159 and His67 (see Figure 4c).

CoMFA 3D QSAR Models. PLS analysis on the
multifit alignment of all of the compounds in the
training set using default parameters resulted in a

CoMFA QSAR model with a modest q2 value of 0.423.
Examination of the residuals from the LOO cross-
validated predictions indicated that some compounds
might be outliers. Omission of two compounds, 24 and
25, resulted in an increase in the q2 value to 0.696 for
the remaining 22 compounds. Several factors may
contribute to the outlier status of compounds 24 and
25, including low biological activity and structural
uniqueness. Compound 24 appears to have a lower
activity than expected when compared to its counter-
part, compound 23. The outlier status of compound 25
could stem from its structural uniqueness. The reduc-
tion of an R,â-unsaturated double bond in compound 25
introduces much conformational flexibility that is absent
in its unsaturated counterparts, compounds 8-11. One
would expect a higher potency for compound 25 than it
exhibited, based upon the presence of the catechol
moiety, which appears to confer high potency on all of
the other compounds in which it occurs.

Reducing the lattice step size from 2 to 1 Å resulted
in a significant change in the q2 value from 0.423 to
0.544 for the model with all 24 compounds and from
0.696 to 0.721 for the model with 22 compounds. The
predictive performance of the CoMFA models is shown
in Figure 2, which indicates that the 1 Å model
performed better at predicting the activities of the test
set than the 2 Å model (Figure 2b). The CoMFA model
obtained using all compounds in the training set per-
formed better in predicting in the biological activities
of the compounds in the test set than the CoMFA model
derived from a training set of 22 compounds (data not
shown), even though the latter had a higher q2 value.
This shows that a higher q2 value does not necessarily
make a model more predictive with reference to an
external test set. In this case, it appears that structural
diversity dictated the predictive performance of the
models with regard to the test set. The outliers had
structural features that resembled those in many of the
compounds in the test set; therefore, their removal
caused the QSAR models to be less accommodating to
all of the compounds in the test set.

Lower energy cutoff values, namely, 25, 20, and 15
kcal/mol, were investigated, but all led to a decrease in
the q2 value (data not shown). In a previous CoMFA 3D
QSAR study of flavone HIV-1 IN inhibitors, a 10 kcal/
mol cutoff was found to be optimal.37 The PLS stdev*
coefficient contour maps for the CoMFA model are
shown in Figure 5a. Green regions indicate areas where
steric bulk is predicted to enhance biological activity,
whereas yellow contours indicate regions where steric
bulk is predicted to be detrimental to biological activity.
Blue-colored regions indicate areas where electropositive
groups are predicted to enhance biological activity, while
red regions represent areas where electronegative groups
are predicted to favor activity. There are green contours
close to the catechol moieties especially the one on the
lower right corner. These are immediately flanked by
yellow contours suggesting that limited bulk right close
to the molecules will be favorable but cannot be ex-
tended beyond that. There are two yellow regions
flanking the carbonyl or keto-enol moiety of the com-
pounds suggesting steric restriction in this region,
possibly a narrow cleft at the binding site. This is
supported by the FlexX docking of the molecules into

Cinnamoyl HIV-1 Integrase Inhibitors Journal of Medicinal Chemistry, 2002, Vol. 45, No. 4 847



the IN active site, as shown in Figure 4c. Projecting the
steric CoMFA contour maps onto the docked-inhibitor
orientation on the MOLCAD-generated solvent acces-
sible (connolly) surface of the IN active site, as depicted
in Figure 5b, shows that these yellow contours demar-
cate the narrow cleft between Lys159 and His67 resi-
dues (see amino acid labeling in Figure 4c), which
accommodates the carbonyl or keto-enol moiety.

There are prominent red contours close to the oxygen
atoms of the catechol moieties suggesting the preference
for electronegative groups at those locations, which is
consistent with the observation that polyhydroxylation

generally enhances HIV IN inhibitory activity.16 Blue
contours reside around the upper left-hand and lower
right-hand corners of the molecule, the latter just
bracing the hydrogen atoms of the catechol moiety,
indicating that electropositive groups are predicted to
increase activity in those areas. This is also a possible
indication that H-bond donor groups will be favored in
those locations.

The projection of the CoMFA electrostatic contour
map onto the electrostatic potential surface map of the
binding site generated by the MOLCAD shows a general
complementarity as depicted in Figure 5c. Red regions
on the binding site surface map represent positive
electrostatic potential, whereas blue regions on the
surface represent negative electrostatic potential. There-
fore, the red CoMFA contour around the carbonyl group
(electronegative) matches well with the red, highly
electropositive surface of the binding site provided by
amino acid residue Lys159. The large blue CoMFA
contour around the hydroxyl hydrogen (electropositive)
at the right lower corner complements the dark blue
(highly electronegative) surface of the active site pro-
vided by Cys65 and Asp64. The other red and blue
CoMFA contours appear to be in intermediate electro-
static potential regions or pointing out into solvent. Of
the two possible binding domains that were identified
by FlexX docking (Figure 4b,c), the east-west domain
complements the CoMFA PLS contour maps better than
the north-south domain, supporting our proposed bind-
ing mode. It should be kept in mind, however, that the
CoMFA and CoMSIA coefficient maps show relative
differences in that “more positive” or “more negative”
may also mean that all compared values are still in the
negative range or positive range, respectively. In that
case, mapping the actual electrostatic potential onto the
surface could show a mismatch.

CoMSIA 3D QSAR Models. CoMSIA is a relatively
new alternative molecular field analysis method to
CoMFA. It is touted to be less affected by changes in
molecular alignment and to provide more smooth and
interpretable contour maps as a result of employing
Gaussian type distance dependence with the molecular
similarity indices it uses.20 Furthermore, in addition to
the steric and electrostatic fields, CoMSIA defines
explicit hydrophobic and hydrogen bond donor and
acceptor descriptor fields, which are not available with
standard CoMFA. The use of CoMSIA along with
CoMFA shows that in most instances it performs
similarly to CoMFA in terms of predictive ability,
sometimes slightly better, and other times slightly
worse than CoMFA. Overall, it is a good addition to the
3D QSAR tool kit and is gaining popularity.

In the present study, we obtained better PLS statis-
tics and predictive performance on the test set with the
CoMSIA 3D QSAR models than with the CoMFA models
(Tables 3 and 4). Using default SYBYL CoMSIA pa-
rameters and all compounds in the training set with the
multifit molecular alignment resulted in a PLS model
with a q2 value of 0.685 (as compared to a q2 value of
0.423 for CoMFA) and an r2 value of 0.969 for 5 PLS
components. Elimination of the same two outliers,
compounds 23 and 24, as was done in the case of
CoMFA, brought the q2 value up to 0.804 (as compared
to a q2 value of 0.696 for CoMFA) and the r2 value to

Figure 5. (a) CoMFA stdev*coeff contour plots; green contours
indicate regions where bulky groups increase activity, whereas
yellow contours indicate regions where bulky groups decrease
activity. Blue contours indicate regions where positive groups
increase activity, whereas red contours indicate regions where
negative charge increases activity. (b) CoMFA steric contours
projected over the solvent accessible (connolly) topological
surface of the IN active site. (c) CoMFA electrostatic contours
projected over the electrostatic potential surface (blue, negative
potential; red/brown, positive potential) of the IN active site.
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0.975. Unlike CoMFA, reducing the grid spacing from
2 to 1 Å resulted in CoMSIA PLS models with slightly
lower q2 and r2 values (Table 3). However, it provided a
slightly better performance in predicting the activities
of the test set (see Figure 3b). CoMSIA 3D QSAR models
performed well in the prediction of the IN inhibitory
activities of the test compounds and much better than
the CoMFA 3D QSAR models. This can be seen from
the prediction curves for the test compounds (see
Figures 2b and 3b) and the residual values in Table 4.
The superior performance of CoMSIA relative to Co-
MFA, with this data set, may be attributed mainly to
the higher contributions from the hydrophobic and
hydrogen bond donor and acceptor fields to the CoMSIA
QSAR models (Table 3). CoMFA, unlike CoMSIA, does
not have explicit hydrophobic and hydrogen-bonding
descriptors, which are assumed to be implicitly treated
in the CoMFA steric and electrostatic fields, respec-
tively. Overall, the electrostatic field components made
higher contributions to the models (Table 3).

The CoMSIA steric and electrostatic PLS contours
(not shown) were similarly placed as those of the
CoMFA model. The additional hydrophobic, hydrogen
bond donor, and hydrogen bond acceptor contours of
CoMSIA are displayed in Figure 6a,b, respectively. The
hydrophobic fields (white, hydrophobic group favored;

yellow, hydrophobic disfavored) and the H-bond donor
(cyan, favored; yellow, disfavored) and H-bond acceptor
(white, favored; orange, disfavored) fields indicate areas
around the molecules where changes increased or
decreased activity. The H-bond donor fields made the
highest contribution to the CoMSIA QSAR models
(Table 3), which suggests that among the descriptors
considered, the hydrogen bond donor is the most im-
portant factor influencing the IN inhibitory activity of
the compounds in the training set. This was strongly
supported by the FlexX docking results as discussed
above, which indicated that the presence of free hy-
droxyl groups was important for binding to the active
site.

Furthermore, as depicted in Figure 6c,d, the hydro-
phobic, hydrogen bond donor, and hydrogen bond ac-
ceptor contour maps of the CoMSIA 3D QSAR models
complement the lipohilicity (Figure 6c) and hydrogen
bond (Figure 6d) potential surface maps of the binding
site. With regard to the lipophilicity potential surface,
brown is hydrophobic whereas blue is hydrophilic. As
Figure 6c indicates, the regions of the CoMSIA hydro-
phobic map where hydrophobicity is favored (white)
occur over the receptor surface of moderate hydrophobic
potential. The regions of the CoMSIA hydrophobic map
where hydrophobicity is disfavored are in proximity to

Figure 6. (a) CoMSIA stdev*coeff hydrophobic contour plots; white contours indicate regions where hydrophobic (lipophilic)
groups increase activity, whereas yellow contours indicate regions where hydrophobic (lipophilic) groups decrease activity. (b)
CoMSIA stdev*coeff hydrogen bond donor and hydrogen bond acceptor contour plots; cyan contours indicate regions where hydrogen
bond donor groups increase activity, whereas yellow contours indicate regions where a hydrogen bond donor decreases activity.
White contours indicate regions where hydrogen bond acceptor groups increase activity, whereas orange contours indicate regions
where a hydrogen bond acceptor decreases activity. (c) CoMSIA hydrophobic contours projected over the lipophilicity potential
surface map (brown, hydrophobic; blue, hydrophilic) of the IN active site. (d) CoMSIA H-bond donor and acceptor contour maps
projected on the H-bond potential surface map of the IN active site (red, H-bond donor; blue, H-bond acceptor).

Cinnamoyl HIV-1 Integrase Inhibitors Journal of Medicinal Chemistry, 2002, Vol. 45, No. 4 849



the polar keto-enol moiety, which interacts with hy-
drophilic amino acid residues. The complementarity of
the CoMSIA hydrogen bond donor and acceptor contour
maps with the hydrogen bond potential map of the
binding site surface is even more dramatic. As shown
in Figure 6d, the regions of the CoMSIA hydrogen bond
donor map where donor is favored (cyan) occur over the
receptor surface where there is high hydrogen bond
acceptor potential (blue), whereas a prominent H-bond
donor disfavored contour (yellow) occurs right over the
site surface with high H-bond donor potential (red), in
proximity to the Lys159. This is consistent because a
strong H-bond donor group at the binding site will
interact with a H-bond acceptor group on the ligand and
not a H-bond donor group. The CoMSIA hydrogen bond
acceptor contours also show general complementarity
with this binding site surface map as well, albeit not
as strongly as the CoMSIA H-bond donor fields. This
may be a reflection of the lower contribution of the
H-bond acceptor fields relative to the to the H-bond
donor fields in the CoMSIA QSAR models (Table 3).

The high complementarity between the CoMFA and
the CoMSIA contour maps and the surface property
maps (electrostatic potential, lipophilicity potential, and
hydrogen-bonding potential) of the east-west binding
site leads us to propose that site as the likely binding
site and mode of these cinnamoyl inhibitors at the HIV-1
IN active site.

3D QSAR Studies with Docked Alignment. In
addition to the 3D QSAR studies using the multifit
alignment described above, we also conducted CoMFA
and CoMSIA studies with molecules aligned by docking
at the active site in the horizontal binding region. The
docked alignment was quite different as the molecules
were more staggered, and compounds 12, 13, 22, and
25 were outliers from the start as they were docked
differently from the rest of the compounds. A CoMFA
3D QSAR model with a positive, albeit low, q2 value
(0.259 with 4 PLS components, see Table 6) was
obtained with 17 of the compounds in the docked
alignment, leaving out compounds 2, 23, and 24. It is
interesting to note that compounds 24 and 25 were
indicated outliers in the CoMFA model using the
multifit alignment (vide supra). Compound 8 was
indicated as an outlier in this CoMFA model as well,
and its elimination resulted in a substantial increase
in the q2 value of the model to 0.477 with 4 PLS
components (Table 6). As shown also in Table 6, the final
QSAR model with the 16 compounds had an r2 value of
0.988. The steric and electrostatic field contributions to
this model were 0.365 and 0.635, respectively. In the
multifit alignment CoMFA, the corresponding field
contributions were 0.469 and 0.531, respectively (Table
3), indicating that the electrostatic fields dominated in
both CoMFA models. The CoMFA PLS steric and
electrostatic field coefficient map obtained for the docked

Figure 7. (a) CoMFA stdev*coeff contour plots; green contours indicate regions where bulky groups increase activity, whereas
yellow contours indicate regions where bulky groups decrease activity. Blue contours indicate regions where positive groups increase
activity, whereas red contours indicate regions where negative charge increases activity. (b) CoMSIA stdev*coeff steric and
electrostatic contour plots; the region colors have the same interpretation as those in panel a. (c) CoMSIA stdev*coeff hydrophobic
contour plots; white contours indicate regions where hydrophobic (lipophilic) groups increase activity, whereas yellow contours
indicate regions where hydrophobic (lipophilic) groups decrease activity. (d) CoMSIA stdev*coeff hydrogen bond donor and hydrogen
bond acceptor contour plots; cyan contours indicate regions where hydrogen bond donor groups increase activity, whereas yellow
contours indicate regions where a hydrogen bond donor decreases activity. White contours indicate regions where hydrogen bond
acceptor groups increase activity, whereas orange contours indicate regions where a hydrogen bond acceptor decreases activity.
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alignment is shown in Figure 7a, which shows similarity
to the map obtained for the multifit alignment CoMFA
(Figure 5a). This indicates a general agreement between
the two CoMFA models.

Similarly, CoMSIA 3D QSAR study was conducted on
the molecules in the docked alignment. CoMSIA PLS
analysis afforded a q2 value of 0.429 with 5 PLS
components for the 20 compounds in the alignment (see
Table 6). CoMSIA provided a better QSAR model than
CoMFA with this alignment as indicated by the q2

values and the number of compounds that could be
accommodated. The superiority of CoMSIA over CoMFA
found with the multifit alignment QSAR models was
magnified with the docked alignment, indicating that
the CoMSIA model was less affected by alignment
heterogeneity. The statistics of the nonvalidated Co-
MSIA model for the docked alignment are provided in
Table 6. The relative order of importance of the various
CoMSIA descriptor fields, i.e., steric, electrostatic, hy-
drophobic, hydrogen bond donor, and hydrogen bond
acceptor is the same as the order obtained from the
multifit alignment CoMSIA (see Table 3). Here again,
the hydrogen bond donor field is shown to be the most
important. The CoMSIA PLS field coefficient contour
maps obtained with the docked alignment are shown
in Figure 7b-d. The steric and electrostatic contour map
is similar to the CoMFA map (Figure 7a) while the
hydrophobic and hydrogen bond field contour maps are
very similar to the corresponding maps of the multifit
alignment CoMSIA (Figure 6a,b), further showing that
there is an agreement between the two CoMSIA models.

Conclusion

We have established predictive CoMFA and CoMSIA
3D QSAR models for conformationally constrained cin-
namoyl HIV IN inhibitors, with CoMSIA 3D QSAR
modeling performing better than CoMFA. Molecular
docking and molecular surface property (electrostatic,
lipophilicity, and hydrogen-bonding potential) mapping
have been integrated with CoMFA and CoMSIA 3D
QSAR, to identify a potential binding site and mode for
these cinnamoyl inhibitors at the HIV-1 IN active site.
This study should provide further insights to support
structure-based design of anti-HIV compounds as po-
tential AIDS drugs. If confirmed by the solution of the

structures of cinnamoyl inhibitors in complex with the
HIV-1 IN catalytic core, this study would be a demon-
stration of the power of combining 3D QSAR and
docking to explore the binding sites and modes for
ligands where these are unknown.
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